Ultrafast Excited-State Deactivation of the Bacterial Pigment Violacein.
نویسندگان
چکیده
The photophysical properties of the natural pigment violacein extracted from an Antarctic organism adapted to high exposure levels of UV radiation were measured in a combined steady-state and time-resolved spectroscopic study for the first time. In the low-viscosity solvents methanol and acetone, violacein exhibits low fluorescence quantum yields on the order of 1 × 10-4, and femtosecond transient absorption measurements reveal excited-state lifetimes of 3.2 ± 0.2 and 4.5 ± 0.2 ps in methanol and acetone, respectively. As solvent viscosity is increased, both the fluorescence quantum yield and excited-state lifetime of this intensely colored pigment increase dramatically, and stimulated emission decays 30-fold more slowly in glycerol than in methanol at room temperature. Excited-state deactivation is suggested to occur via a molecular-rotor mechanism in which torsion about an interring bond leads to a conical intersection with the ground state.
منابع مشابه
Ultrafast Luminescence Decay in Rhenium(I) Complexes with Imidazo[4,5-f]-1,10-Phenanthroline Ligands: TDDFT Method
The interpretation of the ultrafast luminescence decay in [Re(Br(CO)3(N^N)] complexes as a new group of chromophoric imidazo[4,5-f]-1,10-phenanthroline ligands, including 1,2-dimethoxy benzene, tert-butyl benzene (L4) and 1,2,3-trimethoxy benzene, tert-butyl benzene (L6), was studied. Fac-[Re(Br(CO)3L4 and L6] with different aryl groups were calculated in singlet and triplet excited states. The...
متن کاملTheoretical study toward understanding ultrafast internal conversion of excited 9H-adenine.
The CASPT2/CASSCF method with the 6-311G basis set and an active space up to (14, 11) was used to explore the ultrafast internal conversion mechanism for excited 9H-adenine. Three minima, two transition states, and seven conical intersections were obtained to build up the two deactivation pathways for the internal conversion mechanism. Special efforts were made to explore the excited-state pote...
متن کاملUltrafast excited-state dynamics and fluorescence deactivation of near-infrared fluorescent proteins engineered from bacteriophytochromes.
Near-infrared fluorescent proteins, iRFPs, are recently developed genetically encoded fluorescent probes for deep-tissue in vivo imaging. Their functions depend on the corresponding fluorescence efficiencies and electronic excited state properties. Here we report the electronic excited state deactivation dynamics of the most red-shifted iRFPs: iRFP702, iRFP713 and iRFP720. Complementary measure...
متن کاملUltrafast deactivation mechanism of the excited singlet in the light-induced spin crossover of [Fe(2,2'-bipyridine)3]2+.
The mechanism of the light-induced spin crossover of the [Fe(bpy)3](2+) complex (bpy=2,2'-bipyridine) has been studied by combining accurate electronic-structure calculations and time-dependent approaches to calculate intersystem-crossing rates. We investigate how the initially excited metal-to-ligand charge transfer (MLCT) singlet state deactivates to the final metastable high-spin state. Alth...
متن کاملUltrafast excited-state dynamics of eosin B: a potential probe of the hydrogen-bonding properties of the environment.
The photophysics of two dyes from the xanthene family, eosin B (EB), and eosin Y (EY) has been investigated in various solvents by femtosecond transient absorption spectroscopy, first, to clarify the huge disparity of the EB fluorescence lifetimes reported in literature, and, second, to understand the mechanism responsible for the ultrafast excited-state deactivation of EB in water. The excited...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The journal of physical chemistry. A
دوره شماره
صفحات -
تاریخ انتشار 2017